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S T A B I L I T Y  O F  A N N U L A R  O R T H O T R O P I C  P L A T E S  

N. V.  Pustovoi ,  K. A.  Matveev ,  and D. V. Mokhovnev UDC 624.073 

It is assumed that the orthotropy of the plate material is rectangular or polar, and a uniformly 
distributed, external compressive or tensile load is applied to the internal boundary of the plate. 
Stability is analyzed by the Ritz method with the use of Alfutov-Balabukh and Bryan energy 
criteria. Diagrams of the critical external load and buckling modes as a function of the plate 
dimensions are given. 

F o r m u l a t i o n  o f  t h e  P r o b l e m .  Let a plate be referred to a Cartesian coordinate system so tha t  its 
middle surface coincides with the xlOx2 coordinate plane. We assume tha t  the plate is made of an orthotropic 
material and loaded by an in-plane "dead" load q (Fig. 1). Deformed only by in-plane forces, the plate can be 
in a plane state of equilibrium which is characterized by zero deflections of its middle surface. For a certain 
level of tile external load, a bent equilibrium configuration is possible. This critical value of the external load 
is generally determined by using the energy stability criteria [1-4]. Indeed, under the requirement of mininmm 
external load, the stability problem of an orthotropic plate is equivalent to the problem of determining the 
extremals of the Alfutov-Balabukh fimctional [1-4]: 

I[w, ~, (I)] ---- ~ OijklW,ijW,kl dxt dx2 § -~ 
(1) 

i, j, k, l = 1, 2. 

Here D i j k l  is tile flexural-rigidity tensor, bijkl  is the tensor of elastic constants of the plate material, h is 
the plate thickness, W(Xl, x2) is a deflection function that must satisfy the kinematic boundary conditions, 
o'i~ -~ (~ijkl~,kl are the statically admissible prebuckling stresses, a + ---- (~ijkl(~,kl are the additional stresses 
that  act in the middle surface of the plate and are caused by buckling, ~(xt ,  x2) and (I)(xl, x2) are the 
corresponding stress functions [1-4], and (~ijkl ~--- (~ij(~kl -- (~ik(~jl, ~ij ,  (~kl, ~ik ,  and 5jr are the Kronecker symbols. 
The subscripts after a comma indicate partial differentiation with respect to the corresponding variables. 

The variational equation 5I =-- 0 implies the stability equation and the static boundary conditions for 
bending and the strain-compatibility equations and the continuity conditions at the contours for the plane 
and bent configurations. The critical value of functional (1) does not depend on the form of the statically 

s if the stresses a + satisfy the equation [2-4] admissible stresses aij 

-~ (Ti+jjW,iW,j dxl dx2 - bi jkl f f  ijO'kl dxl dx2 = 0. (2) 
fl fl 

Thus, in solving the stability problems on the basis of functional (1) with Eq. (2) satisfied, there is no 
need to determine the prebuckling stress state exactly. As this state, one can use any statically admissible 
state, including the solution of the problem for an isotropic plate. Moreover, if tim domain ~t is canonical, 
the variational problem (1) and (2) can be solved by the Ritz method. 
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S t a b i l i t y  A n a l y s i s  of  A n n u l a r  P la t e s .  In polar coordinates (Fig. 1), the dimensionless functional 
(1) and condition (2) have the form 

27r ~ 2x ~ 2~ 

1/S- l /  ---- bijktO'ijaktpdpdO(z, j, k, l = 1, 2); (3) -~ DijklvijvklpdpdO + -~ 5cjoi'OjpdpdO - A - -s -+ - 

0 1 0 1 0 1 

Here 

2~r ~ 2~r 

.iS -iS+, 0'." 
0 1 0 1 

= 0 ,  i , j , k , l = l ,  2. (4) 

02'ffs ~ p ( ~  0 9 \  ) 10,~ 1 02,tb 0,~ 1 , ~  
Ull : V l ' )  ~ - ' v 2 1  : 022 - -  + p2 " ~)1 = 02 = op" " N ' p Op 002' ~ '  -~ ~ ;  

p = r / R i  is the dimensionless radius vector, ~ = R2/RI ,  @ = w / R l ,  bijkt = b i j k l / x / b l l l l b 2 2 2 2 ,  D i j k l  = 
- - S  S D~J,/DH,,D~.2~,, ~+ = ~+ ,/bH~b2~2, ~j = 4j/q, D~j~, b~j~, ~+, and ~ are the components of the 

corresponding tensors in the orthonormal basis of the polar coordinate system, and A = qhR2/v /DuuD2222 
is the externaMoad parameter. 

We assume that  the plate is made of a material with rectangular orthotropy. The stress state of the 
isotropic plate [5] is used as a statically admissible prebuckling stress state. The stress function ~(p, 0) is 
written in the form of a series 

~ ( p , O ) = a [ p _ ( 2 ~ + l ) ( P - l ~  2 / P  - l ~ a  ]cos0 
+B[p-(2~+I)(P-I~ 2 /P-I~ 3] C[1 ~/P-t"~2 ( P - I ~  3 \ ~ - - ~ ]  + (~+1) \~ - -_ - -~ /  j s i n 0 +  - 3 t ~ ] -  j +2\~-~--i- / ] 

OG Oo 

q- E E (p -- 1)(/)-1 -- 1)(p -- ~)(fl-1 _ ~-l)pm[Cmn cos (rt - 1)0 + D,~n sin nO], (5) 

where A, B, C, Cmn, and Dmn are arbitrary constants. Series (5) is complete and subject to the boundary 
conditions [2-4] 

'~((, 0) ---- 0, ~ p  = 0 ,  ~ + 1 ( 1 , 0 ) = ~ + ( 1 , 0 ) = 0 ,  ( b ( 1 , O ) = A c o s O + B s i n O + C .  

If the internal contour is clamped and the external contour is traction-free, the deflection function can 
be written in the form 
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ffJ(p, 8) = ~-~- Z ( p -  1)(p - l  - 1)pm[A,,,cos(n - 1)8 + Bm,,sin nO]. (6) 
7 n ~ - - O O  n :  | 

Substi tution of series (5) and (6) into functional (3) and integral condition (4) and evaluation of the 
corresponding integrals reduce the stability problem to a problem of determining the conditional extremum 
of the function I[A, B, C, Am,, Bin,,, Cmn, Din, I, which was solved by tim Lagrange multiplier method [2-4]. 
The stationarity conditions lead to the generalized eigenvalue problem for the load parameter. The minimum 
positive and maximum negative values from the eigenvalue spectrum correspond to the critical load Act for 
compression (q > 0) and that  for tension (q < 0), respectively. 

For a plate made of a material with a constant cylindrical orthotropy, the exact prebuckling stresses 
can be found [5]. Therefore, it is expedient to seek the solution of the stability problem with the use of the 

Bryan functional [1-4] 

2~ ~ 2~" :// //  5 5~ i, j, k, l =  1, 2. (7) [1 ----- -~. DijklVijVklP dp dO + 2 3 
o 1 0 1 

The deflection of a plate whose external contour is clamped and whose internal contour is traction-free can 

be written in the form 

@(p,O) = Z Z A ' ~ ( p - ( ) ( p - 1  - ~- l )pmc~  - 1)0. (8) 
r g t ~ - - ~  n ~ -  l 

Substituting series (8) into functional (7) and evaluating the corresponding integrals, we obtain a problem 
of determining the absolute extremum of the function f |  [Am,,]. The stationarity conditions 0il/OAm,n = 0 
lead to a homogeneous system of equations linear in the parameters A m n .  The minimum positive value of 
the external load parameter  ),cr for which the system has a nontrivial solution is critical. 
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S o m e  Resu l t s .  In numerical implementation of the method described above, ms many terms (less than 
40) were retained in the series for tile deflection and stress functions as was necessary to determine the critical 
load with accuracy to three significant digits. The plates made of glass-cloth-base laminate, glass-reinforced 
plastic, and boron plastic were calculated. In Figs. 2-5, curve 1 refers to the glass-cloth-base laminate with 
Ej --- 2 .15.104 MPa, E2 = 1.98 �9 104 MPa, G = 0.401 �9 104 MPa, ~'12 = 0.14, and ~21 = 0.152, curve 2 to 
glass-reinforced plastic with E1 -= 6.25- 104 MPa, E2 = 2 .12 .10  ~ MPa, G = 0.90.104 MPa, v12 = 0.073, 
and v21 = 0.215, and curve 3 to boron plastic with E1 = 21.1 - 104 MPa, and E2 = 2.11 �9 104 MPa, 

G = 0.85 �9 104 MPa, ~12 = 0.35, and v21 -- 0.035. 
Figures 2 and 3 show the critical load versus the rat io of the radii for a plate of rectangular or thotropy 

whose internal edge is clamped and whose external edge is traction-free. Figures 2 and 3 correspond to the 
loads q < 0 (tension) and q > 0 (compression), respectively. Similar results, which were obtained under the 
assumption that  the orthotropy of the above-indicated materials is cylindrical (the internal edge of the plate 
is free and the external edge is clamped),  are shown in Figs. 4 and 5 (for q < 0 and q > 0, respectively). 
In the case of tensile buckling q < 0, the number of nodal diameters of the buckling mode changes as 
varies. At the points where the transit ion from one mode to another occurs, the curves have breaks (points 
in Figs. 2 and 4). Examples of these modes are shown in Fig. 6 [for ~ = 3 (a) and 4 (b), respectively] 
for an annular orthotropic boron-plastic plate with a free external edge and a clamped internal edge. For 
compressive loads, the buckling modes have no nodal diameters; moreover, the cylindrically orthotropic plates 
buckle axisymmetrically. 

The  results show the efficiency of the energy criterion proposed. This approach can be extended 
to other  loading cases and suppor t ing conditions and generalized to the case of the heterogeneous elastic 
characteristics of the material. 
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